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ABSTRACT : 

We report on a spectroscopic study of the spin-

wave eigen-modes in a circular spin-valve 

nano-pillar, perpendicularly magnetized along 

zˆ. Spectroscopy is performed by Magnetic 

Resonance Force Microscopy (MRFM). 

Distinct spectra are measured depending on 

whether the nano-pillar is excited by a uniform 

in-plane radio-frequency (RF) magnetic field 

or by an RF current flowing perpendicularly 

through the layers. These results are in 

agreement with micromagnetic simulations of 

the time decay response of the local 

magnetization to excitations with different 

azimuthal symmetries, (xˆ + iyˆ)e−iφ. This 

demonstrates that the azimuthal -index is the 

discriminating parameter for the selection 

rules, as only = 0 modes are excited by the RF 

magnetic field, whereas only = +1 modes are 

excited by the RF current, owing to the 

orthoradial symmetry of the induced RF 

Oersted field. 

1.1 INTRODUCTION 

Technological progress in the fabrication of 

hybrid nanostructures using magnetic metals 

has allowed the emergence of a new science 

aimed at utilizing spin dependent effects in the 

electronic transport properties [1]. An 

elementary device of spintronics consists of 

two magnetic layers separated by a normal 

layer. It exhibits the wellknown giant 

magneto-resistance (GMR) effect [2, 3] and 

the converse spin transfer effect [4, 5]. 

From an experimental point of view, the 

precise identification of the spin-wave (SW) 

eigen-modes in hybrid magnetic 

nanostructures remains to be done [6–11]. Of 

particular interest is the exact nature of the 

modes excited by a polarized current in spin 

transfer nano-oscillators (STNOs). Here, the 

identification of the associated symmetry 

behind each mode is essential. It gives a 

fundamental insight about their selection rules 

and about the mutual coupling mechanisms 

that might exist intra or inter STNOs. It also 

determines the optimum strategy to couple to 

the autooscillating mode observed when the 

spin transfer torque compensates the damping, 

a vital knowledge to achieve phase 

synchronization in arrays of nano-pillars [12]. 

These SW modes also have a fundamental 

influence on the high frequency properties of 

spin-valve devices, and in particular on the 

noise of magneto-resistive sensors [13, 14]. 

 
Fig. 1.1 Schematic representation of the 

experimental setup. Two independent 

excitation circuits are used: in red, the circuit 

allowing the injection of an RF current 

perpendicular-to-plane through the nano-pillar 
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(irf, red arrow); in blue, the circuit allowing 

the generation of an RF in-plane magnetic 

field (hrf, blue arrow) 

This work concentrates on a comprehensive 

identification of the SW eigenmodes in a 

normally magnetized circular spin-valve nano-

pillar, where the axial symmetry is preserved. 

We shall perform a comparative spectroscopic 

study of the SW modes excited either by an RF 

current flowing perpendicularly through the 

nano-pillar, as used in spin-torque driven 

ferromagnetic resonance (ST-FMR) [15, 16], 

or by a homogeneous RF in-plane magnetic 

field, as used in conventional FMR. The 

experimental spectra are compared to 

micromagnetic simulations of the time decay 

response of the local magnetization to a small 

perturbation of the magnetic configuration. 

This allows identifying and labeling the 

observed SW eigenmodes, according to their 

symmetry and to the dipolar coupling between 

the two magnetic layers. 

The spin-valve structure used in this study is a 

standard Permalloy (Ni80Fe20 = Py) bi-layer 

structure sandwiching a 10 nm copper (Cu) 

spacer: the thicknesses of the thin Pya and the 

thick Pyb layers are respectively ta = 4 nm and 

tb = 15 nm. The extended film is patterned by 

standard e-beam lithography and ionmilling 

techniques to a nano-pillar of radius 125 nm. 

The magnetic parameters of this sample have 

been measured in [17], and are reported in 

Table 1.1. The top Cu and bottom Au contact 

electrodes are shown in red in Fig. 1.1. They 

are impedance matched to allow for high 

frequency characterization by injecting an RF 

current irf through the device. Hereafter, 

spectra associated to SW excitations by this 

part of the microwave circuit will be displayed 

in a red tone. 

The originality of our design is the addition of 

an independent top microwave antenna whose 

purpose is to produce an in-plane RF magnetic 

field hrf at the nanopillar location. In Fig. 1.1, 

this part of the microwave circuit is shown in 

blue. Injecting a microwave current from a 

synthesizer inside the top antenna produces a 

homogeneous in-plane linearly polarized 

microwave magnetic field, oriented per-

pendicularly to the stripe direction. Hereafter, 

spectra associated to SW excitations by this 

part of the microwave circuit will be displayed 

in a blue tone. 

We shall use in this study a method 

independent of transport to detect the magnetic 

resonance inside a spin-valve nanostructure: a 

Magnetic Resonance Force Microscope 

(MRFM) [18–20], hereafter named 

mechanical-FMR. A first decisive advantage of 

the mechanical-FMR technique is that the 

detection scheme does not rely on the SW 

spatial symmetry because it measures the 

change in the longitudinal component of the 

magnetization. It thus probes all the excited 

SW modes, independently of their phase [21, 

22]. A second decisive advantage is that 

mechanical-FMR is a very sensitive technique 

that can measure the magnetization dynamics 

in nanostructures buried under metallic 

electrodes [23]. Indeed, the probe is a 

magnetic particle attached at the end of a soft 

cantilever and is coupled to the sample 

through dipolar interaction. 

The mechanical detector consists of a 800 nm 

diameter sphere of soft amorphous Fe (with 3 

% Si) glued to the apex of an Olympus Bio-

Lever having a spring constant k ≈ 5 mN/m. In 

our setup, the separation between the center of 

the spherical probe and the nano-pillar is set to 

1.3 µm (see Fig. 1.1), which is a large distance 

considering the lateral size of the sample. The 

external magnetic field produced by an 

electromagnet is oriented out-of-plane, exactly 

along the nano-pillar axis zˆ. In our study, the 

strength of the applied magnetic field shall 

exceed the saturation field (≈ 8 kOe), so that 

the nano-pillar is studied in the saturated 

regime. The mechanical sensor measures then 

the spatial average of the longitudinal 

component Mz of magnetization: 

 
where the chevron brackets stand for the 

spatial average over the volume of the 

magnetic body. We emphasize that for a bi-
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layer system, the force signal integrates the 

contribution of both layers. 

The experimental spectra will be shown below 

in Fig. 1.4(b) and Fig. 1.5(b). The important 

point is that the two SW spectra excited by hrf 

and irf are distinct, implying that they have a 

different origin. It will be shown in the 

theoretical Sect. 1.2.1 that the RF field and the 

RF current excitations probe two different 

azimuthal symmetries . Namely, only = 0 

modes are excited by the uniform RF magnetic 

field, whereas only = +1 modes are excited by 

the orthoradial RF Oersted field associated to 

the RF current [24]. The mutually exclusive 

nature of the responses to the uniform and 

orthoradial symmetry excitations is a property 

of the preserved axial symmetry, where the 

azimuthal index is a good quantum number, 

i.e., different -index modes are not mixed and 

can be excited separately. 

1.2 Identification of the Spin-Wave Modes 

In this section, we discuss the boundary-value 

problem for SW propagation inside normally 

magnetized disks, where the confinement leads 

to a discrete SW spectrum. 

Neglecting the thickness dependence, only 

three indices are required to label the 

resonance peaks: the usual azimuthal and 

radial indices for a single disk (,m), plus an 

additional index referring to the anti-binding 

or binding (A or B) coupling between the two 

magnetic layers in mutual dipolar interaction. 

1.2.1 Single Magnetic Disk 

SW eigen-modes are the solutions of the 

linearized equation of motion of the 

magnetization, obtained by decomposing the 

instantaneous magnetization vector M(t) into a 

static and dynamic component [25]: 

 
where the transverse component m(t) is the 

small dimensionless deviation (|m|  1) of the 

magnetization from the local equilibrium 

direction, uˆ. In ferromagnets, |M| = Ms is a 

constant of the motion, so that the local 

orthogonality condition uˆ · m = 0 is required. 

We restrict our study to the case of thin layers 

so that one can assume that the magnetization 

dynamics is uniform along the thickness. For a 

normally magnetized disk, where uˆ = ˆz, the 

SW modes can be classified according to their 

behavior under rotations in the x–y plane (2D 

vector equations with polar coordinates ρ and 

φ): 

 
where the functions ψ(ρ) describe the 

dependence of the SW mode on the radial 

coordinate ρ and have to be determined from 

the dynamical equations of motion. To satisfy 

the appropriate boundary conditions at the 

edges of the magnetic body [26], we shall use 

as the trial vectors the radial profiles of the 

form ψ(ρ) = J(k,nρ), where J(x) is the Bessel 

function and k,n are SW wave-numbers 

determined from the pinning conditions at the 

disk boundary ρ = R. For our experimental 

conditions (ta,tb  R), the pinning is almost 

complete, and we shall use k,n = κ,n/R, where 

κ,n is the nth root of the Bessel function of the 

th order. The set of Bessel function form here a 

complete basis in the space of vector functions 

m. 

Figure 1.2 shows a color representation of the 

Bessel spatial patterns for different values of 

the index ν = ,n. We restrict the number of 

panels to two values of the azimuthal mode 

index, = 0,+1, with the radial index varying 

between n = 0, 1, 2. In our color code, the hue 

indicates the phase (or direction) of the 

transverse component mν , while the 

brightness indicates the amplitude of |mν | 2. 

The nodal positions are marked in white. A 

node is a location where the transverse 

component vanishes, i.e., the magnetization 

vector is aligned along the equilibrium axis. 

This coding scheme provides a distinct 

visualization of the phase and amplitude of the 

precession profiles. The black arrows are a 

snapshot of the mν vectors in the disk and are 

all rotating synchronously in-plane at the SW 

eigen-frequency. 
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Fig. 1.2 Color representation of the Bessel 

spatial patterns for different values of the 

azimuthal mode index (by row) and radial 

mode index n (by column). The arrows are a 

snapshot of the transverse magnetization mν , 

labeled by the index ν = ,n 

The top left panel shows the ν = 0, 0 ( = 0, n = 

0) mode, also called the uniform mode. It 

usually corresponds to the lowest energy mode 

since all the vectors are pointing in the same 

direction at all time. Below is the = +1, n = 0 

mode. It corresponds to SWs that are rotating 

around the disk in the same direction as the 

Larmor precession. The corresponding phase 

is in quadrature between two orthogonal 

positions and this mode has a node at the 

center of the disk. The variation upon the n = 

0, 1, 2 index ( being fixed) shows higher order 

modes with an increasing number of nodal 

rings. Each ring separates regions of opposite 

phase along the radial direction. All these 

spatial patterns preserve the rotation 

invariance symmetry. The coupling to an 

external coherent source depends primarily on 

the -index [27] as the excitation efficiency is 

proportional to the overlap integral. 

 
where h1(r) is the spatial profile of the external 

excitation field. It can be easily shown that a 

uniform RF magnetic field, h1 = hrfx, can only 

excite = 0 SW modes. Obviously, the largest 

overlap is obtained with the so-called uniform 

mode (n = 0). Higher radial index modes (n = 

0) still couple to the uniform excitation but 

with a strength that decreases as n increases 

[19, 28]. The = 0 normal modes, however, are 

hidden because they have strictly no overlap 

with the excitation. In contrast, the RF current-

created Oersted field, h1 = hOe(ρ)(−sinφxˆ + 

cosφyˆ) has an orthoradial symmetry and can 

only excite = +1 SW modes. 

1.2.2 Double Magnetic Disks 

The interaction between two identical 

magnetic layers leads to the splitting of the 

uniform mode in each layer into two collective 

modes: the binding and anti-binding modes. 

This has been observed in interlayer-

exchange-coupled thin films [29] and in 

trilayered wires where the two magnetic 

stripes are dipolarly coupled [30]. In the case 

where the two magnetic layers are not 

identical (different geometry or magnetic 

parameters), this general picture continues to 

subsist. Although both isolated layers have 

eigen-modes with different eigen-frequencies, 

the collective magnetization dynamics in each 

layer are still symmetrically or anti-

symmetrically coupled. But here, the 

precession of magnetization can be more 

intense in one of the two layers and the 

spectral shift of the coupled SW modes with 

respect to the isolated SW modes is reduced, 

as it was observed in both the dipolarly- [30] 

and exchange coupled cases [31]. 

Here, we assume that the dominant coupling 

mechanism between the two magnetic disks in 

the nano-pillar is the dipolar interaction. We 

neglect any exchange coupling between the 

magnetic layers mediated through the normal 

spacer or any coupling associated to pure spin 

currents [7, 32] in our all-metallic spin-valve 

structure. Our nano-pillar consists of two 

dislike magnetic layers, having different 

thicknesses, with ta < tb, and different 

saturation magnetizations, with Ma < Mb. In 

the normally saturated state which is 

considered here, this difference of 

magnetization leads to a difference in the 

internal demagnetizing field of each layer (self 

dipolar coupling) and in the stray field of one 

layer on the other one (cross dipolar coupling). 

As a result, the eigen-frequency of the uniform 

mode of the thin layer is larger than the one of 

the thick layer, ωa > ωb. This is represented in 
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Fig. 1.3(a), on both sides of the bi-layer 

diagram, where we have reported on an energy 

scale their relative positions. 

In the perpendicular geometry, the strength of 

the dynamical dipolar coupling Ω between the 

layers depends on the cross tensor element jj , 

associated to the in-plane component of the 

dipolar magnetic field produced inside layer j 

by the in-plane component of the 

magnetization of layer j (see [17, 33]). It is 

attractive (lower in energy) when both layers 

precess in anti-phase because the dynamical 

dipolar charges in each layer are alternate 

(anti-ferromagnetic coupling). Thus the 

binding state corresponds to a collective 

motion where the two layers vibrate 

antisymmetrically (B) and the anti-binding 

state to a collective motion where they vibrate 

symmetrically (A). In this case, the larger of 

the frequencies (ωa) shifts up by while the 

smaller one (ωb) shifts down by the same 

amount. This effect is summarized in Fig. 1.3. 

 
A numerical estimate of the coupling strengths 

between the lowest energy SW modes in each 

disk can be found in [17]. For the experimental 

parameters, Ω/2π 0.5 GHz. This coupling is 

almost an order of magnitude smaller than the 

frequency splitting ωa − ωb, caused mainly by 

the difference of effective magnetizations of 

two disks: γ 4π(Mb − Ma) 2π · 4.5 GHz. As a 

result, the shift of the resonance frequencies 

due to the dipolar coupling is negligible, ω/2π 

0.06 GHz. The effect of dynamic dipolar 

interaction is more pronounced for the level of 

mode hybridization. For instance, at the 

frequency ωA ≈ ωa, the ratio between the 

precession 

 
Fig. 1.3 Schematic representation of the 

coupled dynamics between two different 

magnetic disks. When the two disks are 

dynamically coupled through the dipolar 

interaction, the binding state B corresponds to 

the two layers oscillating in anti-phase at ωB, 

with the precession occurring mostly in the 

thick layer, whereas the anti-binding state A 

corresponds to the layers oscillating in phase 

at ωA, with the precession mostly in the thin 

layer 

amplitudes in the two layers is given by 

 
For the experimental parameters, Ω/(ωa −ωb) 

≈ 0.1, i.e., the precession amplitude in the disk 

b is about 10 % of that in the disk a. Thus, 

although the dipolar coupling induces a small 

spectral shift (second order in the coupling 

parameter (1.5)), its influence in the relative 

precession amplitude is significant (first order 

in the coupling parameter (1.6)). 

1.2.3 Micromagnetic Simulations vs. 

Mechanical-FMR Experiments 

Although the analytical formalism presented 

above allows estimating the spectrum, several 

approximations have been made. In particular, 

we have assumed total pinning at the disks 

boundary for the SW modes and no variation 

of the precession profile along the disks 

thicknesses (2D model), and we have 

neglected the dependence on the mode index ν 

of the dynamic dipolar coupling. Instead of 

developing a more complex analytical 

formalism, we have performed a complete 

calculation of the SW spectra inside our nano-

pillar sample using the open source 
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micromagnetic simulation package Nmag [34]. 

Nmag is a finite element solver based on the 

general purpose multi-physics library Nsim. It 

is developed by the group of H. Fangohr and 

T. Fischbacher in the School of Engineering 

Sciences at the University of Southampton. 

Table 1.1 Magnetic parameters of the thin Pya 

and thick Pyb layers measured by 

mechanicalFMR in the nano-pillar 

 
In this simulation, the full three-dimensional 

(3D) dynamics of the bi-layer system is 

calculated. The thin layer is discretized with a 

mesh of 4 nm (equal to its thickness), and the 

thick layer with a mesh of 3 nm. The numbers 

of nodes are respectively 6135 in the thin layer 

and 37598 in the thick layer. The magnetic 

parameters introduced in the code are the ones 

reported in Table 1.1. The magnetization 

vector is assumed to be uniform inside each 

cell, which is valid because the cell size is 

smaller than the exchange length Λ 5 nm in 

Permalloy. We emphasize that the simulations 

incorporate the perturbing presence of the 

magnetic sphere attached on the MRFM 

cantilever. Moreover, the 10 nm thick Cu 

spacer is replaced by vacuum, so that the 

layers are only coupled trough the dipolar 

interaction (spin diffusion effects are absent). 

The first step is to calculate the equilibrium 

configuration of the normally magnetized 

nano-pillar at Hfix = 10 kOe. The external 

magnetic field is applied exactly along zˆ and 

the spherical probe with a magnetic moment m 

= 2 × 10−10 emu is placed on the axial 

symmetry axis at a distance s = 1.3 µm above 

the upper surface of the nano-pillar (see Fig. 

1.1). The convergence criterion introduced in 

the code is 1/Ms dM/dt < 1°/ns. The result 

reveals that the equilibrium configuration is 

almost uniformly saturated along zˆ. Still, a 

small radial flaring (<5°) of the magnetization 

from zˆ is observed at the periphery of the 

thick and thin layers. 

In order to calculate the SW spectrum 

corresponding to a given excitation of this 

equilibrium state at Hfix = 10 kOe, we record 

the time decay response of the local 

magnetization to a small perturbation of the 

magnetic configuration, and we Fourier 

transform the ringdown of the transverse 

magnetization [35]. Two different initial 

conditions are simulated. For the conventional 

FMR spectrum, in which a uniform RF field is 

used to excite SW modes, we use the 

following perturbation vector field: 

 
This form corresponds to an excitation which 

puts the same energy in the lowest 6 n-index 

modes with azimuthal index = 0. For the 

spectrum excited by an RF current flowing 

through the nano-pillar, which creates an 

orthoradial RF Oersted field in the magnetic 

volume, we use: 

 
At time t = 0, we add at every mesh the 

perturbation vector field defined in (1.7) or in 

(1.8) to the local unit vector along the 

equilibrium magnetization. The first one 

corresponds to a uniform tilt (i.e., in the same 

azimuthal direction) of the magnetic moments 

located in the center region of the two disks. 

The second one corresponds to an orthoradial 

tilt of the magnetization at the periphery of the 

nano-pillar. The perturbation angle ϑ = 0.01  1 

leads to a deviation from the local equilibrium 

axis of less than 1° degree, which is small 

enough to ensure that non-linear effects are 

weak in the simulated dynamics. We then 

compute the magnetization decay inside the 

whole sample. The ringdown of the transverse 

magnetization is recorded in a 10 ns time 

window with a sampling interval of 5 ps. 
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Fig. 1.4 Panel (a) is the numerically calculated 

spectral response to a uniform excitation field 

h1 ∝ xˆ, from a 3D micromagnetic simulation 

performed at Hfix = 10 kOe. The peaks are 

labeled according to their precession profiles 

shown in (c), (d), and (e). A light (dark) color 

is used to indicate the energy stored in the thin 

(thick) layer. Panel (b) shows the experimental 

spectrum measured by mechanical-FMR when 

exciting the nano-pillar by a homogeneous RF 

magnetic field at ffix = 8.1 GHz 

At every time step, a spatial average of the in-

plane component of the magnetization is 

recorded. In the case of the initial condition of 

(1.7), we construct the complex reduced 

magnetization m · 

xˆ

                                                                             

inside each layer j = a,b. In the case of the 

initial condition of (1.8), a different spatial 

average is used, m · (xˆ + 

iyˆ)e−iφ

                                                                            

, where φ is the local azimuthal coordinate of 

the mesh node. Then, the power density 

spectrum of the time decay of the full averaged 

reduced magnetization is calculated in each 

layer using a complex Fourier transform. 

The comparison between the simulated and 

experimental spectra corresponding to a 

uniform RF field excitation and to an RF 

current flowing through the nano-pillar is 

presented in Figs. 1.4(a)–(b) and 1.5(a)–(b), 

respectively. The frequency scale of the 

simulation is in correspondence with the field-

sweep scale of the experiments performed at 

fixed RF frequency ffix = 8.1 GHz through the 

affine transformation Hext − Hfix = 2π(f − 

ffix)/γ , as seen from the frequency and field 

scales above Fig. 1.4(a) and below Fig. 1.4(b), 

respectively. Since in the simulations, we have 

access to the dynamics inside each layer, a 

light (dark) color is used to indicate the power 

spectrum of the thin (thick) layer. The 

resonance peaks are labeled according to the 

modes precession profiles, which are 

visualized by calculating the Fourier transform 

of the magnetization decay at every mesh 

node. The results are shown in the right side of 

Figs. 1.4 and 1.5, along with the precession 

profiles along the median direction. The 2D 

views of the spatial distribution of the 

transverse magnetization in the thin Pya and 

thick Pyb layers are shown using the same 

color code as in Fig. 1.2. 

 
Fig. 1.5 Panel (a) is the simulated spectral 

response to an orthoradial excitation field h1 ∝ 

−sinφxˆ +cosφyˆ. Panel (b) is the experimental 

spectrum measured by mechanical-FMR for an 

RF current excitation. Panels (c)–(e) show the 

simulated precession patterns of the eigen-

vectors 

Let us first focus on Fig. 1.4 which enables 

identifying the SW modes excited by a 

uniform RF magnetic field. The five peaks 

labeled on the simulated spectrum are in 

correspondence with the experimental 

resonance peaks. From the color code panels 

of Fig. 1.4(d)–(e), we see that these five modes 

have the same phase along the azimuthal 

direction, which is the character of the = 0 

index. The largest peak in the simulation 

occurs at the same field as the experimental 

peak at H➀. This lowest energy mode 

corresponds to the most uniform mode with 

the largest wave-vector and no node along the 

radial direction, thus it has the index n = 0. For 

this mode, the thick layer is mainly precessing, 

with the thin layer oscillating in anti-phase, as 

can be seen from the representations of its 

spatial profile in Fig. 1.4(c), so it bears the 

binding index B. Therefore, it should be 

labeled B00, which confirms the character of 

the lowest energy collective mode in the 

perpendicular geometry discussed in Sect. 

1.2.2. We also note that the relative amplitude 
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of the precession in the two layers found in the 

simulation is roughly in agreement with the 

predicted value from the analytical model, see 

(1.6). The same analysis can be made for the 

second peak, labeled B01, which occurs close 

to the experimental peak at H➁. It also 

corresponds to a resonance mainly in the thick 

layer, and its color representation shows that 

this is the first radial harmonic (n = 1), with 

one line of node in the radial direction. Again, 

the thin layer is oscillating in anti-phase, with 

the same radial index n = 1, as clearly shown 

by the mode profile along the median 

direction. The third peak is labeled A00 and is 

located close to the experimental peak at H➂. 

It corresponds this time to a uniform (n = 0) 

precession mainly located in the thin layer, in 

agreement with the experimental analysis 

presented in [17]. In this mode, the thick layer 

is also slightly vibrating in phase with the thin 

layer (anti-binding index A). The other two 

modes, A01 and B02, correspond to higher 

radial harmonics of = 0 modes in the 

nanopillar, at H➃ and H➄. Due to the 

proximity between these two modes, the 

precession profile of the mode B02 appears 

somewhat hybridized with the precession 

profile of the mode A01. Finally, one can also 

check from the simulations the independence 

of the precession profiles on the thickness 

(within the uncertainty of the calculated 

profile, which is about ±2 %). This confirms 

the validity of the 2D approximation and 

explains the performance of the analytical 

model [17]. 

Let us now turn to Fig. 1.5(b), corresponding 

to the spectroscopic response to an RF current 

of same frequency 8.1 GHz flowing 

perpendicularly through the nanopillar. The 

SW spectrum is acquired under the exact same 

conditions as for standard FMR, i.e., the 

spherical magnetic probe of the mechanical-

FMR detection is kept at the same location 

above the sample. The striking result is that the 

position of the peaks in Figs. 1.4(b) and 1.5(b) 

do not coincide. More precisely, there seems to 

be a translational correspondence between the 

two spectra, which are shifted in field by about 

0.5 kOe from each other. The comparison with 

Fig. 1.5(a) enables us to identify the SW 

modes excited by the orthoradial RF Oersted 

field produced by the RF current. Here again, 

the peaks of the simulated power spectrum in 

Fig. 1.5(a) are in good correspondence with 

the experimental resonance peaks in Fig. 

1.5(b). Repeating the same analysis as above, 

the peaks follow the same sequence of A/B, n 

indexation and only differ by their -index. This 

explains the translational correspondence 

between the SW spectra of Figs. 1.4(b) and 

1.5(b). Finally, we point out that the dipolar 

pinning at the boundaries of each disk in the 

modes displayed in Fig. 1.5(c) is not trivial 

[36]. The general trend observed here is that 

the thin layer is less pinned than the thick layer 

for symmetric modes, and vice versa. 

Thus, these full 3D micromagnetic simulations 

allow the identification of the SW modes 

probed experimentally by both a uniform RF 

magnetic field and an RF current flowing 

through the nano-pillar, i.e., of their respective 

selection rules. They also give a deeper insight 

on the collective nature of the magnetization 

dynamics in the nano-pillar discussed in Sect. 

1.2.2. 

1.3 CONCLUSION 

In summary, we used the MRFM technique 

[20] to study the SW eigen-modes in the 

prototype of a STNO – a normally magnetized 

nano-pillar composed of two magnetic layers 

in dipolar interaction. We were able to 

compare the SW spectra of this passive STNO 

excited by a uniform in-plane RF magnetic 

field and by an RF current flowing 

perpendicularly through the layers. We found 

that distinctly different SW modes (having 

azimuthal indices = 0 and = +1, respectively) 

are excited by the two above mentioned 

excitation methods. We also developed a 

simple analytic theory providing a 

comprehensive labeling of all the SW eigen-

modes of a magnetic nano-pillar in the studied 

axially symmetric case. This labeling requires 

three independent indices: the usual azimuthal 

and radial indices and n used for the SW 
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modes of a single magnetic disk, and an 

additional index referring to the binding or 

anti-binding (B or A) dipolar coupling between 

the two magnetic disks. 

The obtained experimental and analytic results 

were also compared to the results of 3D 

micromagnetic simulations obtained with the 

Nmag package. We learned that the -index, 

related to the azimuthal symmetry of the SW 

modes, is the discriminating parameter for the 

selection rules of the SW mode excitation. We 

believe that our results are important for the 

optimization of the characteristics of nano-

spintronic devices, and in particular STNOs, 

and for the experimental determination of the 

STNO parameters. 
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